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Abstract—Expert systems for fault diagnosis are computation-
ally expensive to build and maintain, and lack scalability and
inherent adaptability to unknown events or modifications in the
topology of the monitored system. While data-driven feature se-
lection mechanisms can facilitate diagnosis without the hardship
of developing and maintaining expert systems, purely data-driven
mechanisms lack understanding of semantic importance within a
feature set, and would benefit from additional domain knowledge.
Part of this additional knowledge can be extracted from meta-
data. The proposed approach combines data-driven metrics and
semantic information contained in the feature names to produce
selections of features which best represent an underlying event.
This study extends a cross entropy based optimization method to
join semantic importance with data behavior. A benchmarking
architecture is introduced to evaluate the benefits of semantic
analysis, and demonstrate the performance and robustness of
semantic feature selection on different types of faults in network
telemetry datasets, modeled with the YANG data modeling lan-
guage. The results illustrate the interest of such a complementary
meta-data analysis for data-driven fault diagnosis, and highlight
the robustness of the studied approach against variations in the
input feature set.

Index Terms—Fault Diagnosis, Telemetry, Feature Selection

I. INTRODUCTION

Fault diagnosis, i.e., identifying the root cause of an event,
has been studied in communication networks, manufacturing,
maintenance of mechanical systems, transportation, and soft-
ware engineering. By mimicking processes of human reason-
ing, expert or rule-based systems have proven to be useful
for in-depth diagnosis [1]. Most efforts of expert systems
for fault diagnosis rely on the definition of a state graph,
representing the known and unknown states of the system, with
defined transitions, depending on the available features [2].
Typical methods include probabilistic automata and Petri nets
[3], [4]. However, such fault diagnosis systems present severe
scalability and adaptability issues. They require an extensive
modeling stage, with full knowledge of the fault behavior,
which does not scale in large, relatively complex systems.
In applications such as IoT, where a variety of technologies
and sensors interact with each other, or in network telemetry,
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Figure 1. Semantic feature selection for fault diagnosis in network telemetry
data. Instead of exporting large volumes of telemetry data to centralized
servers, semantic feature selection can filter the interesting information for
fault diagnosis.

where the dimension of the data changes with the network
topology, telemetry data is often heterogeneous and of varying
and high dimension, making it difficult to design a system
which covers the entire fault behavior. Graph based expert
systems also imply high computational costs in the diagnosis
process when the dimension increases [5]. Being hand-crafted
and domain-dependent, expert systems also lack the ability to
adapt to new, unseen data [1].

In this context, robust data-driven approaches allow to (i)
avoid the cost of expert systems conception and maintenance,
and (ii) leverage high dimensional telemetry data to robustly
diagnose events with limited domain knowledge. Insight about
the inner structure of the feature set (semantics, relations,
relative importance) may overcome the absence or scarceness
of explicit domain knowledge. Extracting and integrating
that insight about inner structure and relationships within
the feature set is thus a major challenge for improving the
performance of fault diagnosis systems.

One way to provide a data-driven diagnosis is distilling a
set of features that are of operational importance. Selecting
original features can be a simple way to assist fault diagnosis



while avoiding the modeling stage. Instead of presenting an
expert with high dimensional data, feature selection narrows
down the scope of investigation, as shown in Figure 1,
based on a given metric, e.g., individual amplitude of change,
variance, or difference from a standard value.

A. Related work

Typical feature selection methods [6] identify the most im-
portant features in a dataset without the objective of explana-
tion or fault diagnosis. Feature selection is usually intended for
dimension reduction. Classical dimension reduction methods
such as Principal Component Analysis, Linear Discriminant
Analysis, or t-Distributed Stochastic Neighbor Embedding
[7]–[9] produce artificial dimensions, i.e., dimensions which
are combinations (linear or not) of the original features. For
the purpose of interpretability in fault diagnosis, the returned
features need to correspond to original dimensions. Efforts
in feature selection of original dimensions include wrapper
and filter methods. Wrapper methods [10] select the original
features with regards to a given clustering algorithm. Wrapper
methods have proven to be computationally expensive when
the original data is of high dimension [6]. Filter methods
rely on data collections to define a relevance score, often
based on metrics derived from entropy [11]–[13], or statisti-
cal dependencies [14] to capture the amount of information
contained in the selected features. The previous selection
methods have a different objective than this study, which
intends to select original features for explanation instead of
computational efficiency.

Feature selection for fault diagnosis has been studied to
detect faults in mechanical systems and modern process in-
dustries [15]. These applications consider small input dimen-
sions compared to this study. Other selection mechanisms
for diagnosis include explanation methods in Deep Learn-
ing applications. The explanation process aims at selecting
the original features responsible for a classification decision.
Computation of the Shapley values [16] or LIME [17] score
the contributions of each input feature to a classifier, in order
to better understand a decision process. Although the process
of selecting original features for fault diagnosis is similar, the
purpose of explainable AI methods is to describe the reason for
a given classification (that is, for their own decisions), whereas
the objective of this study is to describe the underlying data
itself. A first specification and preliminary results of this
method for fault diagnosis was presented in [18].

B. Contribution

This study presents a broader conceptualization of the
previous semantic analysis.

This paper presents an evaluation of the semantic feature
selection method presented in [18] on network telemetry
datasets, a hybrid selection process which combines data-
driven metrics and semantic analysis of meta-data. This ap-
proach produces a representation for network fault events, ex-
tracted from the telemetry available, that can be used for fault
diagnosis. This study presents a broader conceptualization of

the previous semantic analysis. The added contributions of this
paper are the following:
• The demonstration that data-driven feature selection

methods fail to identify semantic feature importance
relationships.

• This introduction of a novel benchmark for evaluating
the performance and robustness of selection methods for
event diagnosis on telemetry data.

• The presentation of benchmarking results, for both data-
driven and semantic feature selection methods, on data
retrieved from routers running the Cisco IOS-XR oper-
ating system, modeled with the YANG data modeling
language [19]. This benchmark demonstrates both the
performance and robustness of the semantic feature se-
lection method for fault diagnosis.

C. Paper outline

The remainder of this paper is organized as follows:
section II describes the problem space and specificities of
network telemetry data. section III presents the limitations
of data-driven selection methods and highlights the need for
additional information. section IV presents the meta-data based
importance estimation method and its inclusion in the selection
process. Finally, section V presents the experiment setup and
results for performance and robustness evaluation on network
telemetry datasets.

II. DATA DESCRIPTION AND PREPROCESSING

This section presents the data particularities of telemetry
datasets and preprocessing mechanisms in the context of fault
diagnosis.

A. Telemetry data properties

Telemetry data takes the form of a time-series with each
feature representing the value of one particular sensor in
a system over time. Specifically in the context of network
telemetry the following data properties can be described.

1) High, variable dimensionality: In telemetry applications
where the cost of an individual sensor, or of measuring
an individual feature, is relatively low (as it is the case
in networking, software engineering, IoT), telemetry datasets
may be high-dimensional. In dynamic systems, dimensionality
itself may change over time, as features appear or disappear.
In particular, in network telemetry, performance of a network
interface i may be described through ni features or dimensions
including interface i’s byte count, data rate, queue occupation,
etc. Enabling or disabling interface i in a network thus leads to
an increase or decrease of the dimensionality of corresponding
network telemetry dataset by ni. Dealing with dataset holes
that result from such variability may require additional data
preprocessing.

2) Heterogeneity: The data values can be of different data
types and formats, e.g., in the network telemetry datasets
used in this study, on an individual router, the numerical
features can be positive incremental integer values ranging
in the billions, e.g., byte counts, or non-monotonic functions



ranging from 0 to 1, e.g., CPU consumption. Comparing data
of different nature also requires additional preprocessing.

3) Aggregation level: Telemetry datasets are also hetero-
geneous in the aggregation level of each feature. Telemetry
applications usually monitor complex systems, composed of
different subsystems or services, such as network routers or
mechanical systems composed of individual components and
services. Telemetry data is usually composed of (i) features
describing the state of a single element (referred as individual
feature in this paper, e.g., a single byte counter), and (ii) fea-
tures which are aggregations of several sources of information
(referred as compound features in this paper, e.g., the total
number of open connections on a router).

B. Telemetry data preprocessing

The properties presented in section II-A highlight the chal-
lenges of data-driven fault diagnosis. The high and varying
dimensionality cause dimensions to appear and disappear from
the feature set dynamically, without indication on their sig-
nification or relevance. Heterogeneity complicates the use of
most data-driven approaches which assume the identical nature
of all features. Different aggregation levels implies different
levels of importance in the feature set, which only stems from
domain knowledge. However, with the assumption that the
data around an event is fixed, it is possible to define a window
around the event time where the data can be relieved of some
of these properties. For example, differentiating the incremen-
tal features and performing min-max scaling can solve the
heterogeneity problem. This differentiation can be performed
in real-time by estimating which features are incremental
during a bootstrapping period, the duration of this period
being considered long enough to simply estimate that any
monotonously increasing features is incremental. The dynamic
dimension problem can be handled by padding missing values
with zeros, which narrows down the dataset to a time-series
of fixed dimension for further processing.

This preprocessing is not optimal: (i) min-max scaling
does not handle unbalanced data well, (ii) the bootstrapping
period can be too short and consider non-incremental data as
incremental, and (iii) zero-padding dynamic dimensions can
create artificial abrupt changes in the data which alter detection
and diagnosis. Further optimization is outside of the scope of
this paper since the presented preprocessing mechanism has
proven to provide reasonable results in section V.

III. DATA-DRIVEN METHODS

This section presents data-driven selection methods for fault
diagnosis. These methods take an event time, t0, as a given
input1, and return a ranking of the features with weights
representing how much each feature changes within a window
around the event time [t0 − w, t0 + w]. Throughout this
section, the pre-processed time-series data is annotated as

1Event detection itself and mechanisms for determining the time t0 = t(e)
of an event e are outside the scope of this paper; a change-point detection
method [20] could be used for this purpose.
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Figure 2. Change shapes present in telemetry datasets. For simplicity, the
univariate change amplitude metric only considers mean and spike changes.

S = {sn,t}n≤N,t≤T with sn,t being the value of feature n
at time t.

Three approaches are tested on network telemetry datasets
to cover a range of data-driven change amplitude metrics:
the univariate change amplitude method, which computes
the change amplitude for every feature independently by
looking at univariate time-series data (section III-A), a linear
multivariate change amplitude method, which considers N -
dimensional data points for every time step (section III-B),
and a non-linear N -dimensional method which identifies fea-
ture contributions to a non-linear classifier (section III-C). A
comparative analysis of the examined methods concludes the
section (section III-D).

A. Univariate Change Amplitude (UCA)

The univariate change amplitude is defined, for every fea-
ture, as the maximum value between the normalized mean
value change between windows respectively before and after
the time of the event, and the normalized spike amplitude at
the time of the event. With Et∈[ti:tf ](sn,t) being the temporal-
mean value of the normalized data between times ti and tf ,
and A the value of the spike amplitude on a window around
the time of the event [t0 − ε, t0 + ε], for every feature n, the
univariate change amplitude is expressed as:

σ(sn, t0) = max
(∣∣Et∈[t0−w:t0](sn,t)− Et∈[t0:t0+w](sn,t)

∣∣∣∣∣∣A− 1

2
(Et∈[t0−w:t0−ε](sn,t) + Et∈[t0+ε:t0+w](sn,t)

∣∣∣∣)
(1)

The univariate change amplitude metric scores every feature
independently by looking only at the univariate data in a
given time frame. Given this data, when an event occurs in
the system, the observed change can show several patterns,
as shown in Figure 2, e.g., mean value change, variance
change, spikes, frequency change. The metric needs to provide
comparable values for different shapes or data type, e.g.,
numerical, categorical, incremental or not. Limiting this metric
to first moment statistics, i.e., changes in mean value or spikes,
simplifies the metric which can be used as a baseline for
comparison with the more elaborate methods below.

B. Linear Discriminant Analysis (LDA)

The approach taken in this section considers N -dimensional
data points instead of univariate time-series. The method
used is the Linear Discriminant Analysis (LDA) [8], which
computes the coordinates of the hyperplane which maximizes



separability between N -dimensional data points before and
after the event. With st defined as the N -dimensional vector
of feature values at time t, the weights in the final ranking
correspond to the coefficients of the hyperplane v∗, defined
as:

v∗ = (Σ− + Σ+)
−1(µ− − µ+)

with µ± = Et∈[t0:t0±w](st)

and Σ± =
∑

t∈[t0:t0±w]

(st − µ±)(st − µ±)
> (2)

With this classification between points in windows around
the event, the ranking will be less sensitive to outliers and
represent general tendencies in the data. However, the classifier
will be unable to discriminate between classes if the discrimi-
natory, i.e., this method makes assumptions on the distribution
of the measurements being Gaussian within both classes.

C. Non-linear classifier

The chosen non-linear classifier is a random forest trained
to classify points before and after the event time, and the
feature contributions are extracted by leveraging the SHAP
methodology [16], which relies on the computation of the
Shapley values.

Similarly to LDA, this ranking considers N -dimensional
points at any given time t, without assuming a distribution over
the two classes, which enables the consideration of non-linear
relationships between points before and after the event time t0.
The SHAP methodology is originally designed for explainable
AI, where methods are developed to find the original features
which contribute most to a classifier decision. In order to
apply this method, the binary random forest classifier is first
trained to classify points before and after the event time, before
applying the explanation methodology which ranks features by
their contribution to the classifier predictions.

D. Limitations illustration

The three methods are applied on an example network
telemetry dataset of 23650 individual features describing the
state of a router running the Cisco IOS-XR operating system,
when an interface shuts down2.
• Univariate change amplitude: Among the highest ranked

features are mostly compound features such as inter-
face counters, Bidirectional Forwarding Detection (BFD)
sessions state counters, Border Gateway Protocol (BGP)
neighbour counters, as well as individual features such
as the last Routing Information Base (RIB) version, or
negotiated intervals.

• Linear discriminant analysis: The highest contributing
features are traffic counters, data rates and neighbour
advertisement message counters.

• Non-linear classifier: The highest ranked features are
exclusively packet counters and data rates related to

2Because of the solutions verbosity, the 50 highest ranking features for each
method can be found at https://github.com/tfeltin/sefset results/blob/master/
datadriven.md

the state of the interfaces neighbouring the shutdown
interface.

Although all the selected features are either relevant to
the interface shutdown, or linked to a consequence of this
event, none of the methods above place the most important
compound features first, i.e., features representing the number
of active interfaces. This suggest that the highest ranked
features are highly changing in value, but do not necessarily
correspond to anything meaningful to the diagnosis.

Some features are important than others in the diag-
nosis process, albeit identical from a data-driven point of
view. For example, the feature counting active interfaces
up-interface-count and the feature describing the last
version of the RIB table last-rib-version have an
identical behavior around the event, i.e., a step from an integer
value to another, yet up-interface-count can be con-
sidered as the most important indicator of an interface shutting
down, while last-rib-version describes a consequence,
as a part of the re-routing mechanism. From a purely data-
driven approach, the two features are indistinguishable and
are both included among the highest ranked features.

From this analysis, the conclusion is drawn that the de-
scribed data-driven approaches cannot capture importance re-
lationships between features, and additional information needs
to be taken into account to identify important features in
telemetry datasets.

IV. SEMANTIC FEATURE SELECTION

This section presents a generalized approach to the semantic
importance estimation presented in [18] which uses meta-data
information contained in feature names.

A. Estimating semantic importance

Not all features in a telemetry dataset have the same
relevance for the diagnosis of a given fault. For example,
compound features usually are more relevant because they
offer an aggregated perspective of the state of the system,
compared to individual features which only describe a single
component. Section III having illustrated that such relevance
cannot be retrieved exclusively from data, this paper suggests
to estimate the relative importance of features for fault diagno-
sis by exploiting available meta-data, which carries semantic
information. The applied methodology extends the feature
name based semantic importance estimation of [18].

Term Frequency-Inverse Document Frequency (TF-
IDF) [21] is a measure of the importance of a word (or term)
to a document in a corpus of documents; word importance
is quantified as the relative frequency of the word in the
document (term frequency), divided over an estimation of
the information provided by the word in the whole corpus of
documents (inverse document frequency).

tfidf = tf · log (N/df) (3)

In our case, documents are the feature names, and words
are the tokens forming a feature name; these can be individual



Figure 3. Flow chart of semantic feature selection for fault diagnosis. It is
assumed that the diagnosis process is associated with a change-point detector
(outside of the scope of this work), which produces time stamps t0 of detected
events from streaming telemetry data S. The semantic feature selection uses
a data-driven change amplitude metric σ(S, t0) to define the optimization
objective based on cross entropy H(p, q) in Equation 6.

words or groups of words that go together in a feature name.
For example, the feature name up-interface-count con-
sists of three tokens (individual words): up, interface, and
count.

In Equation 3, tf is thus the number of times the token
appears in the feature name, df the number of feature names
containing the token, and N the dimension of the dataset.
The importance of an entire feature name, i.e., the semantic
importance of one feature in the dataset, is estimated as the
average importance of its tokens.

The importance estimation was computed for the same
network telemetry dataset used in section III-D. Within the
top 20 highest scoring features are interface counters, CPU
and memory utilization counters, BFD session counters, and
ICMP TTL exceeded counters. It can be observed that the
highest ranking features are compound features e.g., contain-
ing the words summary or total in their feature name.
This confirms the assumption that compound features can be
estimated to be semantically important.

Feature names are usually short and contain very few token
repetitions. It can be estimated that the number of times a
token appears in a feature name tf ≈ 1, in which case the
importance of a token can simply be approximated by the
inverse frequency of its occurrence in the dataset. This obser-
vation shows that this metric is relying on the discriminative
power of a feature name. The more unique a feature is in a
dataset, the more information it contains when impacted by an
event. Token importance is defined as a distribution over T ,
the space of all existing tokens in the feature set. Considering
τ ∈ T a token, the importance of this token in the set is
approximated as p:

p(τ) = n(τ)/T (4)

with n(τ) the number of times the token τ appears in the set,
and T the sum of the number of tokens in each feature name
in the set.

B. Selection cross entropy

Assuming a subset of features with a token distribution q
is taken from the original feature set with token distribution
p. To describe an event, this subset is expected to preserve
tokens from the original set which carry the most information,
i.e., rare token instances in distribution p. This is quantified

through a measure of cross entropy H(p, q) between the initial
and final token distributions p and q, defined as:

H(p, q) = −
∑
τ∈T

p(τ) log q(τ) (5)

A high cross entropy implies a low likelihood is related to
semantic quality, i.e., the ability for an operator to understand
the selection. The advantage of using this metric is twofold:
(i) it favors the selection of features composed of rare tokens,
identified as carrying the most information, and (ii) it favors
specificity in the distribution, which favors feature selections
with a small number of tokens. The selection which maximizes
the cross entropy value is just the one feature which contains
the rarest tokens in the set. Having a single feature as selection
is trivial to interpret, even more so when its tokens preserve
the most information from the original set. However, in the
context of fault diagnosis, this needs to be joined with feature
contributions to the event, which is why cross entropy is
jointly maximized with a change amplitude metric presented
in section III.

C. Optimization process

The semantic feature selection is defined as an optimization
process which jointly maximizes the data-driven change metric
and the cross entropy based semantic importance estimation, as
shown in Figure 3. The final optimization objective is defined
as [18]:

Lα(S, t0, p, q) = (1− e−
|S|
α )H(p, q)

1

|S|
∑
s∈S

σ(s, t0) (6)

where σ(s, t0) is the univariate change amplitude score from
section III-A, and α is a regularization parameter, which aims
at penalizing very small selections and can be used as a tuning
parameter for the size of the selection.

The optimization is defined a greedy process. The input
variables are the event time t0 and the multivariate time-
series data S. The change score σ(s, t0) is computed for each
univariate time series s ∈ S in the full dataset and the scores
are ranked in descending order. The initializing step selects the
Ni features with highest change scores as the initial selection,
with Ni defined depending on the use-case (Ni = 500 in the
network telemetry application used in section V). At every
step, the selection mechanism performs two operations. First,
for every feature that is not in the selection, the score is
computed for the selection with this extra feature included.
Every feature which improves the score of the current selection
when added is appended to the current selection. Then, the
same operation is performed, by instead trying to remove
each feature in the selection. Every removed feature which
improves the score is removed from the current selection.
The optimization process stops when no addition or removal
improves the score. If this criterion is not reached after Imax
iterations, the process stops and returns the current selection
with the notification that an optimum was not reached.



D. Illustration

The output of the selection method is a list of original input
features which are deemed to best describe the underlying
event. For example in the network telemetry datasets in this
study, for a routing loop, data was collected on one of the
devices through which the traffic is looping. With feature
names modeled with YANG and more than 40 thousand input
features, the output of semantic feature selection on a routing
loop is the following 6 features:
- Cisco-IOS-XR-ipv4-io-oper:ipv4-network/
nodes/node/statistics/traffic[node-name=
0/1/CPU0]output
- Cisco-IOS-XR-ipv4-io-oper:ipv4-network/
nodes/node/statistics/traffic[node-name=
0/1/CPU0]hopcount-sent
- Cisco-IOS-XR-infra-statsd-oper:infra-
statistics/interfaces/interface/latest/
protocols/protocol[interface-name=
HundredGigE0/1/0/34 protocol-name=
IPV4_UNICAST]bytes-sent
- Cisco-IOS-XR-infra-statsd-oper:infra-
statistics/interfaces/interface/latest/
interfaces-mib-counters[interface-name=
HundredGigE0/1/0/34]bytes-sent
- Cisco-IOS-XR-infra-statsd-oper:infra-
statistics/interfaces/interface/latest/
generic-counters[interface-name=
HundredGigE0/1/0/34]bytes-sent
- Cisco-IOS-XR-pfi-im-cmd-oper:interfaces/
interface-xr/interface[interface-name=
HundredGigE0/1/0/34]bytes-sent

The first two feature in this list are the ICMP output and hop
count exceeded features, followed by traffic counters on the
interface which is seeing the incoming traffic from the loop.

V. BENCHMARK

Comparing this feature selection for fault diagnosis method
to existing solutions is difficult because the literature lacks a
dedicated evaluation. This section introduces a benchmark to
address this issue and identify the added benefit of a semantic
analysis of meta-data for fault diagnosis. This approach also
aims to evaluate the robustness of the method with variations
in the collected input features, in order to quantify the depen-
dency of the semantic method on the input feature set.

A. Datasets

The datasets used in this benchmark are extracted from
several devices in a Clos-topology lab environment with
simulated traffic and inserted events3. Each dataset contains
20 to 40 thousand individual features depending on the device.
The datasets in the benchmark each contain one single inserted
event. The time of the event is known to the selection

3Details on the topology in https://github.com/cisco-ie/telemetry

mechanism. The purpose is to evaluate every selection output
in an isolated way.

Four injected events are used in this benchmark and for
each event, data was collected from different devices : (i)
interface admin shutdown, on the two devices at the ends of
the disconnected link, (ii) BFD failure (filtering BFD message
to trigger a failure), (iii) black hole (removing FIB entries to
cause silent packet drops), collected on the concerned device,
and (iv) a routing loop (by adding static routes), with data
collected from the three devices concerned by the loop.

B. Metrics for feature selection

Objectively evaluating a feature selection for a diagnosis
process is complicated since the feature importance during
diagnosis is subjective and operator dependent. With this
observation, defining a metric which quantifies precisely how
far the output is from an ideal is impossible. Although the
precise ground truth is intractable, the metrics defined in
this section aim to get an assessment of how the method is
performing.

The idea is to define an upper and lower bound on what the
acceptable outputs are for this method, based on the described
event. This paper defines the following two metrics that will
act as such:
• Precision: defined as the proportion of selected features

in the output selection that are related to the input event.
Among all features, those related to an event are defined
as a pre-established subset which are deemed relevant to
select when an even occurs. This metric quantifies the
relevancy of the selection with regards to the input event.

• Completeness: Within the list of all acceptable features
to describe an input event, a subset of these features are
essential to diagnosis. Completeness quantifies whether
the output contains this very minimal requirement, i.e.,
completeness is the proportion of this minimal subset
which is present in the output.

Along with performance, this paper defines one other metric
to evaluate the robustness of the method. As the selection
method highly depends on the input data, over-fitting to either
the raw data or the feature set is a possibility. Therefore, the
following metric is used:
• Robustness: quantifies the degree of variation in the out-

put when the input collection (feature set) is modified. In-
tuitively, since the importance estimation highly depends
on the probability distributions defined in section IV-B,
it is expected that variations in the feature set may cause
significant variations in the selection. The robustness
evaluation aims at identifying precisely which type of
variation in the feature set is associated with which degree
of variation in the final selection.

C. Ground truth definition for evaluation

For each event type, computing the performance and ro-
bustness metrics depends on the definition of a set of features
which act as ground truth for both precision and completeness.
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Figure 4. Comparative benchmarking results between semantic and data-driven feature selection methods for event diagnosis in telemetry data. Figure 4(a)
shows the amount of dimensions reduced, comparing the full feature set (Total), features with changing data (Changed), features with value changes of more
than 95% (Changed > 95%), and features selected with semantic analysis (Semantic). Figure 4(b) shows the benchmarking scores of the data-driven methods
described in section III and compares them to semantic feature selection on an interface shutdown. Figure 4(c) shows the benchmarking results of semantic
feature selection on the four events in the benchmark.

Event type Regular expressions

Interface Shutdown
P : interface.*summary /
HundredGigE0/0/0/N
C : interface-count

BFD Failure
P : bfd
C : bfd.*summary.*count

Routing Loop

P : icmp / bgp / hopcount /
bytes-(sent|received) /
ipv4-io-oper.*traffic
C : hopcount

Black Hole

P : rate / load / icmp /
ipv4-io-oper.*traffic /
connections-(established
|accepted|closed)
C : unreachable-received

Figure 5. Ground truth definition for the four event types contained in
the benchmark, for network telemetry data modeled with YANG. Regular
expressions are defined for precision (P) and completeness (C).

The precision ground truth feature set should contain all
features which are linked to the event, and the completeness
ground truth feature set should contain the minimal set of
features expected from the selection. For simplicity in this
network telemetry use-case, the two feature sets are defined
as a collection of regular expressions. This benchmark defines
a ground truth for four event types in the context of network
telemetry: interface shutdowns, routing loops, BFD session
failures, and black holes. Figure 5 shows the ground truth
definition for datasets using Cisco YANG models.

D. Robustness evaluation

The space of all input subscriptions is too large to be fully
enumerated. The robustness evaluations presented in this study

target two scenarios: (i) incomplete feature sets, e.g., caused
by collection errors, and (ii) variations in token distributions,
e.g., caused by different subscriptions or operators.

1) Random removal of entire modules: From the list of
subscriptions contained in the datasets, this method measures
the impact of removing all the data contained in one or
more modules on the selection output. Different quantities of
removal are tested, i.e., 25%, 50%, and 75% of modules. Two
metrics are extracted from this evaluation based on whether
the removed features belong to the ground truth defined in
section V-C or not: sensitivity, i.e., score variations when
ground truth related features are removed, and consistency, i.e.,
score variations when non ground truth features are removed.

2) Changing feature name distribution: This methodology
willingly makes frequent tokens rarer, as frequency is the
determining factor in the importance estimation. Since YANG
paths can be split into three types of tokens, i.e., modules,
keys, and leaves [19], this process is done independently for
each token. The top 5%, 10%, 25%, 50% most frequent tokens
in each type are made rare, by keeping only one feature among
all the ones containing the given token. Robustness scores are
computed for precision and completeness for each token type,
for a more granular view. The robustness scores are the average
score variations caused by altering one token frequency.

E. Results and discussion

Figure 4 shows the number of selected features and their
performance evaluation results on the benchmark for the
four previous event types, and compares them with data-
driven methods. The results vary depending on the event,
with perfect completeness scores and varying precision4. Good
completeness with lower values in precision such as is the case
for the black hole evaluated in the benchmark corresponds to

4The complete selection results can be found at https://github.com/tfeltin/
sefset results/blob/master/results.md
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(a) Consistency to removal of modules not contained
in the ground truth
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(b) Sensitivity to removal of modules contained in
the ground truth
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(c) Error induced by altered token distributions.

Figure 6. Robustness evaluation. Figure 6(a) (resp. Figure 6(b)) shows the evolution of the precision and completeness of selections when removing modules
which are not included in the ground truth (resp. which are included in the ground truth). Figure 6(c) shows the impact of altering token distributions for
three token types in YANG, as described in section V-D2.

verbose selections with parasite information, but still the right
essential indicators of the event. Overall, the semantic analysis
identifies the 10 to 20 counters which best represent an event in
datasets of 20 to 40 thousand individual counters. Additionally,
the comparison with a data-driven method shows the effect
of semantic analysis. Although the data-driven methods find
features which are linked to the event, they are unable to find
the most important feature which are related to an event, as
hinted in section II, and confirmed by the completeness score.

Figure 6 shows the results of the robustness evaluation.
Figure 6(a) and 6(b) show the robustness evaluation scores
from the first method, i.e., the achieved variations in precision
and completeness when removing features from the input set.
As disclosed by the first robustness test, when removing 25%
to 50% of the input features, the selections are still relevant.
Additionally, with around 60 modules in the studied feature
sets, when dividing these results by the number of removed
modules, it can be argued that removing a single module has
very little impact overall.

Figure 6(c) shows the robustness evaluation using the sec-
ond method, i.e., willingly altering the distribution of tokens
in the feature set. The main takeaway is that the impact of
drastically changing a token’s frequency is almost insignificant
on the final selection, which is unexpected. Changing the
frequency should mean changing its importance estimation,
and break the logic of the semantic analysis, yet the selections
stay similar. One potential cause is the intrinsic logic that
exists in the combinations between the different tokens in the
naming model. When removing all the features that contain
one given leaf name, the modules and key values consequently
removed from the dataset are not randomly selected. This
robustness evaluation shows that making the most frequent
tokens rare does not impact the importance estimation severely
enough to invalidate the semantic analysis.

VI. CONCLUSION

Telemetry data often being heterogeneous, and of high,
varying dimensionality, traditional expert systems lack adapt-

ability and require extensive design and maintenance efforts.
Data-driven approaches can be studied as light-weight and
robust solutions. In that regard, semantic feature selection for
diagnosis is a general solution offering a hint as to which
original features best represent the event.

This paper has shown that purely data-driven feature se-
lection methods for fault diagnosis are inefficient, and unable
to identify the most important features to describe an event.
Although such importance relationships are defined by domain
knowledge, this paper studies an approach for estimating these
semantic importance relationships by studying the meta-data
information contained in available feature names. This seman-
tic analysis produces more complete and precise selections,
while significantly reducing the number of features to analyze.

With the elaboration of a benchmark for evaluating feature
selection methods for fault diagnosis, this study had shown
the performance and robustness of a semantic approach on
network telemetry datasets, with feature names derived from
associated YANG models. The benchmarking results show
the added improvement of semantic analysis compared to
data-driven methods, with an average precision score 1.5x
higher than data-driven methods and a significant complete-
ness score improvement (0% for purely data-driven methods).
Additionally, this study has evaluated the method robustness
to be under variations on average in the output scores for
removed or altered modules. This result shows a robustness
of the semantic analysis against strong variations in the input
feature set, indicating the ability of the method to capture
semantic relationship between features independently of the
input feature set. This study has shown experimental results
on four event types, for telemetry datasets using the YANG
modeling language. A potential extension of this work could
include testing with a higher variety of fault types, and
modeling structures (e.g., SMI, OpenConfig).
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